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Inelastic-collision-frequency theory of transport in low-density fluids
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A formula for the average inelastic collision rdtk; per unit volume of a hard biaxial ellipsoidal molecule
has been derived in terms of a product of the average speéthe molecule, the number densityof a pure
and dilute fluid of the molecules, and a multidimensional collisional inte@vil). The formula has been
utilized in obtaining approximate expressions for the transport coefficients of the fluid in teans,and the
MCI. The expression for the ratio ®,; and the relaxation rate is also obtaing81063-651X99)01502-Q

PACS numbd(s): 05.60—k

[. INTRODUCTION dimensional orientational integral, the average speed of a
molecule, and the number density of the fluid. The corre-
Boltzmann has very satisfactorily shown that a pure andpondingN;; formula for the dense fluid has also been pre-
dilute fluid composed of spherically symmetric moleculessented and its utility is described in estimating the contact
has a Maxwellian linear velocity distribution function in a pair distribution function of the fluid, which cannot be cal-
uniform steady state, called the Maxwellian state. If the fluidculated from the Boltzmann equation. Section IIl estimates
consisting of smooth spheres is at rest in such a state, tH8e transport coefficients of the fluid, when it marginally de-
distribution function can be used in obtaining the average/iates from the Maxwellian state, by using the form of the
frequencyN,; per unit volume corresponding to elastic col- velocity distribution function and the expression foy; . We
lisions of any one hard-sphe(elS) molecule with the iden- find that these results also differ from the rigorous ones de-
tical molecules. When the fluid departs slightly from thefived by us[5,6] only in the numerical factors that vary with
Maxwellian state, the function still gives the first approxima- the semiaxes of the molecules. Section IV derives an expres-
tion to the actual velocity distribution. Hence the function Sion for 7*, which is the ratio of the collision and relaxation
together with the expression fdd,; has been utilized in [1] rates. Itis a useful quantity and in the past has frequently
obtaining the transport coefficients of the fluid. Another setoeen utilized8,10] in the 7* expansion of the heat conduc-
of approximate expressions for these coefficients has alsévity of a low-density pure fluid composed of polyatomic
been derived by Enskog from the normal solution of themolecules.
classical Boltzmann equation. It is amazing that the only
differ_ence in the_ transport coefficients obtained _through the Il. FREQUENCY OF COLLISIONS
nonrigorous collision frequency theory and the rigorous En-
skog transport theory was the presence of numerical factors When a pure and low-density fluid of hard biaxial mol-
of order unity. All of these results are systematically andecules is at rest and is in the Maxwellian state the average
beautifully presented in the treati@] of Chapman and inelastic collision rateN;; per unit volume undergone by
Cowling as well as in the books by Ferziger and Karf@r each molecule is given by
and Rigbyet al. [3].
It has also been explordd] that the uniaxial and biaxial 1
rigid eIhpsoujaI_moIecuIes are fairly gopd reference models Nll:—f f f f f f f1f,0,19 dp de d&;dE,dw,d@,.
for the description of the thermodynamic and transport prop- n
erties of the liquid-crystal-forming liquids. Recently, the @
first-order approximate formuld$,6] for the transport coef-
ficients of such model fluids have been derived rigorouslyHeren is the number density of the fluid consisting of iden-
from the normal solution of the modifief7] generalized tical molecules of mass), ¢ is the impact parameter having
[8,9] Boltzmann equation. The generalized velocity distribu-azimuthal angles, f ,=f ,(C,,®,) is the Maxwellian distri-
tion function of the fluid in the Maxwellian state is also well bution function with postcollisional linear and angular ve-
known. It is tempting to derive thé;; expression of a locitiesC, andw, of the uth (u=1,2) molecule, and,; is
smooth hard biaxial molecule undergoing inelastic collisionghe magnitude of the postcollisional velocity of the point of
with its neighbors in the pure fluid. contact on molecule 2 relative to the velocity of the point of
The primary purpose of this Brief Report is to addresscontact on molecule 1. Specificall§fp;=Co1+ @, X po— @1
such an endeavor by considering only the binary collisions< p;, where¢,;=¢,—¢; andp, is the vector joining the
and ignoring the chattering collisions that may occur be-center of theuth molecule to the point of contact.
tween the pairs of colliding molecules. In Sec. Il the expres- By adopting the technical analysis of Rét], it is pos-
sion has been obtained in terms of the product of a foursible to rewrite Eq(1) in an analytically convenient form
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4n%kgT 12 with a<b<c the semiaxes along the principal axes coordi-
Nyg= mm? ) nate systemgq,, ,B# ,C,) of the uth ellipsoidal molecule hav-
ing anisotropy parameteks, and e,
© (oo o0 27 (27 (1 (1 N
S0 0 0 o O I AR e=(bla)’~1, e~(cla)’~1. (19

a AR R In addition,
+Q§]}k-g(sex)ad(k-u)dQldQZd¢1d¢2dzldzz, 2

: . F,=1+ey’+e.2? 16
wheres,, is the surface element per unit solid angle on the # oY €eZu (16

excluded volume of the two colliding moleculek= Rz and

= —k, is a unit vector normal to the surface of molecule 2 at

the point of contact a 2
’ Uu(Yy 2= ==5[(1+€) +(1+ep)F ,+ep(ec—ep)y,].
V2F;,

1 m 1/2
5=~ —| @y, 3 17
¢} 2 kBT) 921 (©)) -
The variables of integrations are given by,=k-b,
k-g=k-v+Q;-G;+Q5-G5, 4 =sin0#sin¢,t=(1—zi)1’zsin¢# and zﬂzﬁ-éﬂzcoseﬂ,
12 where 6, (¢,) is the polar(azimutha) angle ofk with re-
5:(4ITT) [ (5) spect to &, 6#,6 ), «, is one of the Euler angles
B (a#,ﬁu ,'yﬂ) through which the orthogonal coordinate sys-
. e - tem (K, ,ky,k =k) can be rotated such that the latter system
Q,=A-M,, (6) coincides with the former and=a,— ;.
The linear and angular velocity parts of E®) can be
A= (deth ™1, Yaa+1, Ybb+1_Y%e], (7)  analytically executed using the modifi¢f] Hoffman [11]
procedure and the final result fo;; becomes
M, =[2(deti)"gT] YL, (8) =
and Ni= 2‘/§7T<D>orr (18)
m o - N i i i .
i, \ﬁ(detl )~ V6K (5,%xk,). ) where( )., represents the integrals over the orientational co

ordinates of a pair of colliding molecules and requires nu-
merical computatiofi5]. It is given by
The angular momentura,, and the principal moment of in-

- 27 (27w (1 (1
ertia tensorl of the u molecule are defined by <"'>or:J f J f dp1dpdZdzy( - )(Sey) o -
o Jo JolJo
=1, (10) (19
Further,D represents the rotation-to-translation energy trans-
and , :
fer function[6,11] whose value is
| :laaa+|bbb+|cCC, (11) D:(l_’_qi_’_q%)lm (20)
wh§rela, Iy, andl are the components df along the axes and the expression for the average speexf a molecule is
a, b, and€ and are given by given by
m m m 1 . . [8kgT 12
Iazg(b2+c2), Ibzg(a2+02), Ic=€(a2+b2), :ﬁf f fcdcdw=( Wm) : (21)
(12

For HS molecules of diameter, it can be seen from Egs.
with (14—(17), (9), (20), and (19) that e,=€.=0, (Sg =02,
~ q,=0,D=1, and
I =1,1plc. 1
dett =lalule 13 (D)yo=4m20?, (22)
The form of(sey), is given by o ) ] o
wherej is any number. Hence, in the appropriate limit, the

1 (27 (2= N, formula reduces to the corresponding HS value
<Sex>a:mf dadas;Sey .
NTISI\QHWCO'Z. (23
=a%(1+e,)(1+e)| =3+ =5 | +UsU,, (14 For a dense fluid of hard ellipsoids, E(L8) takes a
F1 2 slightly different form(see p. 301 of Ref.1])
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N nc viD ” " :37T<D>or(9all_ 30a;,+25a)) (31)
Yovan «(Dlor- (24 ) 16mc,(as182,— aj,) ,
Here Y. is the contact pair distribution function that can be With
numerically estimated by using E24) and measurindN,;
: 4 . 15 11
through molecular dynamics simulations. The accurate val- a={=—=5) , (32)
ues of Y, obtained by this procedure can be compared with D D7/,
the results calculated through the approximate analytical ex-
pression proposed by Song and Ma$b#]. The calculation B 1
requires as input the formulas for mean radius of curvature a12=5 D3 D/ (33
R, surface are&, and volumeV of an ellipsoid, which are o
now [13] known. and
IIl. TRANSPORT COEFFICIENTS 47 31 27 12ngg
, T\ opstapst T (1Tgpz)) o G4
The expression for the mean free pathof the biaxial or

fluid follows from Eq.(18):
a-(19 It seems pertinent to mention that the correct value of the

c 2V2« flux of molecules across a unit area of the plare0 from
TN n(D)y’ (25 the negative to the positive side or vice versad (see pp.
1 o 71 and 97 of Ref[1]). We have used this value in the deri-

From the collision frequency theory, the appropriate formu-vation of the formulas forp, A, andD,;. However, some
las[1] for the shear viscosity, thermal conductivity\, and  authors(see, for example, Ref14]) inadvertently assume
self-diffusion coefficienD; of the low-density biaxial fluid, ~that the flux is equal tac/6, which would obviously replace
corresponding to six dynamically active degrees of freedonthe factor 1/2 by 1/3 in Eqg26)—(28).

of a molecule, can be obtained in termscaind A by using The coefficients ofa;; anda;, in the expression fou,
Eq. (25). We thus get are given, in general, byN—3)? and 10N—3), respec-
tively, with N the dynamically active degrees of freedom of a
1 V2mu,mc molecule. The coefficients appearing in Eg§1) correspond
7=zmnal,A= " D)y (26) o N=6 for a rigid biaxial molecule. It can be seen from Egs.

(22) and (29)—(31) that in the HS limitu,=5/16 andup
=37/8. Also, u,=377/16 if N=6 andu,=257/32 if N

A= mnRUUAA:XN?Cv- (27) =3.

N| -

and IV. CONCLUDING REMARKS

1 7 The expressions fdd,; in Egs.(18) and(24) are the main

D11=§CUDA=X2m, (28)  results of this work. We have used H@8) in the preceding
section and here we present one more application of it. The
with x;=U, /U,, x=Up/U,, andc,=3ks/m as the spe- reciprocal oﬂ\l_ll o_f Eq.(1_8) is thg average_tim_econ between
cific heat per unit mass of the fluid at constant volume. WO consecutive inelastic collisions and is given by
The defect of the mean free path formulas is that they Vi

depend on the undetermined factarg, u,, and up that ool = .

arise if allowances are made for the persiste(see Chap. 6 Ne(D)or

of Ref. [1]) of velocities, energies, and concentrations of

particles after a collision. In effect, the factors modify the

free path tau, A, u,A, andupA, which are present, respec-

tively, in Egs.(26)—(28). However, the first-order approxi-

(39

The first approximation of the relaxation time for the transi-
tion of translational energy into rotational energy and vice
versa is given by1]

mate values of the factors can be estimated by comparing the

. ; ; : N—-3
above three equations with the first-order approximate forms = ) (36)
of », \, and D, which have recently been obtainé¢f] 4nd

from a systematic analysis of the Boltzmann-Enskog equ
tion. The values are given by

c /1 1
157(D)or (29) d <5— 5§> Or- 37

al_n our work N=6 andd is given by[5]

Y77 16(5D 1—2D J),,’ 2V2m
3m(D) Hence
D:8<D—71>or, (30 I
or *=Tcoll_4<D —D %o

and T T 3(D)or (39
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The quantityr* , which vanishes in the hard-sphere limit, has  In summary, we find that the present semiquantitative
been fruitfully utilized in the past in the expansif$110] of  analysis is interesting mainly as a supplement to our more
a low-density pure quantal fluid whose molecules possessareful previoug5] analysis.

internal energy.
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