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Inelastic-collision-frequency theory of transport in low-density fluids
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A formula for the average inelastic collision rateN11 per unit volume of a hard biaxial ellipsoidal molecule
has been derived in terms of a product of the average speedc̄ of the molecule, the number densityn of a pure
and dilute fluid of the molecules, and a multidimensional collisional integral~MCI!. The formula has been
utilized in obtaining approximate expressions for the transport coefficients of the fluid in terms ofc̄, n, and the
MCI. The expression for the ratio ofN11 and the relaxation rate is also obtained.@S1063-651X~99!01502-0#

PACS number~s!: 05.60.2k
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I. INTRODUCTION

Boltzmann has very satisfactorily shown that a pure a
dilute fluid composed of spherically symmetric molecu
has a Maxwellian linear velocity distribution function in
uniform steady state, called the Maxwellian state. If the fl
consisting of smooth spheres is at rest in such a state
distribution function can be used in obtaining the avera
frequencyN11 per unit volume corresponding to elastic co
lisions of any one hard-sphere~HS! molecule with the iden-
tical molecules. When the fluid departs slightly from t
Maxwellian state, the function still gives the first approxim
tion to the actual velocity distribution. Hence the functio
together with the expression forN11 has been utilized in
obtaining the transport coefficients of the fluid. Another
of approximate expressions for these coefficients has
been derived by Enskog from the normal solution of t
classical Boltzmann equation. It is amazing that the o
difference in the transport coefficients obtained through
nonrigorous collision frequency theory and the rigorous E
skog transport theory was the presence of numerical fac
of order unity. All of these results are systematically a
beautifully presented in the treatise@1# of Chapman and
Cowling as well as in the books by Ferziger and Karper@2#
and Rigbyet al. @3#.

It has also been explored@4# that the uniaxial and biaxia
rigid ellipsoidal molecules are fairly good reference mod
for the description of the thermodynamic and transport pr
erties of the liquid-crystal-forming liquids. Recently, th
first-order approximate formulas@5,6# for the transport coef-
ficients of such model fluids have been derived rigorou
from the normal solution of the modified@7# generalized
@8,9# Boltzmann equation. The generalized velocity distrib
tion function of the fluid in the Maxwellian state is also we
known. It is tempting to derive theN11 expression of a
smooth hard biaxial molecule undergoing inelastic collisio
with its neighbors in the pure fluid.

The primary purpose of this Brief Report is to addre
such an endeavor by considering only the binary collisio
and ignoring the chattering collisions that may occur b
tween the pairs of colliding molecules. In Sec. II the expr
sion has been obtained in terms of the product of a fo
PRE 591063-651X/99/59~2!/2447~4!/$15.00
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dimensional orientational integral, the average speed o
molecule, and the number density of the fluid. The cor
spondingN11 formula for the dense fluid has also been p
sented and its utility is described in estimating the cont
pair distribution function of the fluid, which cannot be ca
culated from the Boltzmann equation. Section III estima
the transport coefficients of the fluid, when it marginally d
viates from the Maxwellian state, by using the form of t
velocity distribution function and the expression forN11. We
find that these results also differ from the rigorous ones
rived by us@5,6# only in the numerical factors that vary wit
the semiaxes of the molecules. Section IV derives an exp
sion fort* , which is the ratio of the collision and relaxatio
@1# rates. It is a useful quantity and in the past has freque
been utilized@8,10# in the t* expansion of the heat conduc
tivity of a low-density pure fluid composed of polyatom
molecules.

II. FREQUENCY OF COLLISIONS

When a pure and low-density fluid of hard biaxial mo
ecules is at rest and is in the Maxwellian state the aver
inelastic collision rateN11 per unit volume undergone b
each molecule is given by

N115
1

n E E E E E E f 1f 2g21̀ d` d« dcW1dcW2dvW 1dvW 2 .

~1!

Heren is the number density of the fluid consisting of ide
tical molecules of massm, ` is the impact parameter havin
azimuthal angle«, f m[ f m(cWm ,vW m) is the Maxwellian distri-
bution function with postcollisional linear and angular v
locities cWm andvW m of the mth (m51,2) molecule, andg21 is
the magnitude of the postcollisional velocity of the point
contact on molecule 2 relative to the velocity of the point
contact on molecule 1. Specifically,gW 215cW211vW 23rW 22vW 1
3rW 1 , wherecW215cW22cW1 and rW m is the vector joining the
center of themth molecule to the point of contact.

By adopting the technical analysis of Ref.@1#, it is pos-
sible to rewrite Eq.~1! in an analytically convenient form
2447 ©1999 The American Physical Society
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N115S 4n2kBT

mp9 D 1/2

3E
0

`E
2`

` E
2`

` E
0

2pE
0

2pE
0

1E
0

1

exp$2@~ k̂•vW !21V1
2

1V2
2#%k̂•gW ^sex&ad~ k̂•vW !dVW 1dVW 2df1df2dz1dz2 , ~2!

wheresex is the surface element per unit solid angle on
excluded volume of the two colliding molecules,k̂5 k̂2

52 k̂1 is a unit vector normal to the surface of molecule 2
the point of contact,

gW 5
1

2 S m

kBTD 1/2

gW 21, ~3!

k̂•gW 5 k̂•vW 1VW 1•qW 11VW 2•qW 2 , ~4!

vW 5S m

4kBTD 1/2

cW21, ~5!

VW m5AJ•MW m , ~6!

AJ5~det IJ !1/6@ I a
21/2ââ1I b

21/2b̂b̂1I c
21/2ĉĉ#, ~7!

MW m5@2~det IJ !1/3kBT#21/2LW m , ~8!

and

qW m5Am

2
~det IJ !21/6AJ•~rW m3 k̂m!. ~9!

The angular momentumLW m and the principal moment of in
ertia tensorIJ of the m molecule are defined by

LW m5 IJ•vW m ~10!

and

IJ5I aââ1I bb̂b̂1I cĉĉ, ~11!

whereI a , I b , andI c are the components ofIJ along the axes
â, b̂, and ĉ and are given by

I a5
m

5
~b21c2!, I b5

m

5
~a21c2!, I c5

m

5
~a21b2!,

~12!

with

det IJ5I aI bI c . ~13!

The form of ^sex&a is given by

^sex&a5
1

4p2 E
0

2pE
0

2p

da1da2sex

5a2~11eb!~11ec!S 1

F1
2 1

1

F2
2D 1u1u2 , ~14!
e

t

with a,b,c the semiaxes along the principal axes coor
nate system (âm ,b̂m ,ĉm) of themth ellipsoidal molecule hav-
ing anisotropy parameterseb andec ,

eb5~b/a!221, ec5~c/a!221. ~15!

In addition,

Fm511ebym
2 1eczm

2 ~16!

and

um~ym ,zm!5
a

A2Fm
3 @~11ec!1~11eb!Fm1eb~ec2eb!ym

2 #.

~17!

The variables of integrations are given byym5 k̂•b̂m

5sinum sinfm5(12zm
2)1/2sinfm and zm5 k̂• ĉm5cosum ,

whereum (fm) is the polar~azimuthal! angle of k̂ with re-
spect to (âm ,b̂m ,ĉm), am is one of the Euler angles
(am ,bm ,gm) through which the orthogonal coordinate sy
tem (k̂x ,k̂y ,k̂z5 k̂) can be rotated such that the latter syste
coincides with the former anda5a22a1 .

The linear and angular velocity parts of Eq.~2! can be
analytically executed using the modified@6# Hoffman @11#
procedure and the final result forN11 becomes

N115
nc̄

2&p
^D&or , ~18!

where^ &or represents the integrals over the orientational
ordinates of a pair of colliding molecules and requires n
merical computation@5#. It is given by

^¯&or5E
0

2pE
0

2pE
0

1E
0

1

df1df2dz1dz2~¯ !^sex&a .

~19!

Further,D represents the rotation-to-translation energy tra
fer function @6,11# whose value is

D5~11q1
21q2

2!1/2 ~20!

and the expression for the average speedc̄ of a molecule is
given by

c̄5
1

n E E f cdcW dvW 5S 8kBT

pm D 1/2

. ~21!

For HS molecules of diameters, it can be seen from Eqs
~14!–~17!, ~9!, ~20!, and ~19! that eb5ec50, ^sex&a5s2,
qm50, D51, and

^D j&or54p2s2, ~22!

where j is any number. Hence, in the appropriate limit, t
N11 formula reduces to the corresponding HS value

N11
HS5&np c̄s2. ~23!

For a dense fluid of hard ellipsoids, Eq.~18! takes a
slightly different form~see p. 301 of Ref.@1#!
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N115
nc̄

2&p
Yc^D&or . ~24!

HereYc is the contact pair distribution function that can
numerically estimated by using Eq.~24! and measuringN11
through molecular dynamics simulations. The accurate
ues ofYc obtained by this procedure can be compared w
the results calculated through the approximate analytical
pression proposed by Song and Mason@12#. The calculation
requires as input the formulas for mean radius of curvat
R, surface areaS, and volumeV of an ellipsoid, which are
now @13# known.

III. TRANSPORT COEFFICIENTS

The expression for the mean free pathL of the biaxial
fluid follows from Eq.~18!:

L5
c̄

N11
5

2&p

n^D&or
. ~25!

From the collision frequency theory, the appropriate form
las @1# for the shear viscosityh, thermal conductivityl, and
self-diffusion coefficientD11 of the low-density biaxial fluid,
corresponding to six dynamically active degrees of freed
of a molecule, can be obtained in terms ofc̄ andL by using
Eq. ~25!. We thus get

h5
1

2
mnc̄uhL5

&puhmc̄

^D&or
, ~26!

l5
1

2
mnc̄cvulL5x1hcv , ~27!

and

D115
1

2
c̄uDL5x2

h

nm
, ~28!

with x15ul /uh , x25uD /uh , andcv53kB /m as the spe-
cific heat per unit mass of the fluid at constant volume.

The defect of the mean free path formulas is that th
depend on the undetermined factorsuh , ul , and uD that
arise if allowances are made for the persistence~see Chap. 6
of Ref. @1#! of velocities, energies, and concentrations
particles after a collision. In effect, the factors modify t
free path touhL, ulL, anduDL, which are present, respec
tively, in Eqs. ~26!–~28!. However, the first-order approxi
mate values of the factors can be estimated by comparing
above three equations with the first-order approximate fo
of h, l, and D11, which have recently been obtained@5#
from a systematic analysis of the Boltzmann-Enskog eq
tion. The values are given by

uh5
15p^D&or

16̂ 5D2122D23&or
, ~29!

uD5
3p^D&or

8^D21&or
, ~30!

and
l-
h
x-

e

-
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f
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s

a-

ul5
3p^D&or~9a11230a12125a22!

16mcv~a11a222a12
2 !

, ~31!

with

a115 K 15

D
2

11

D3L
or

, ~32!

a1255K 1

D32
1

D L
or

, ~33!

and

a225K 47

4D
2

31

2D3 1
27

4D5 1
12q1

2q2
2

D3 S 12
9

4D2D L
or

. ~34!

It seems pertinent to mention that the correct value of
flux of molecules across a unit area of the planez50 from
the negative to the positive side or vice versa isnc̄/4 ~see pp.
71 and 97 of Ref.@1#!. We have used this value in the der
vation of the formulas forh, l, and D11. However, some
authors~see, for example, Ref.@14#! inadvertently assume
that the flux is equal tonc̄/6, which would obviously replace
the factor 1/2 by 1/3 in Eqs.~26!–~28!.

The coefficients ofa11 and a12 in the expression forul

are given, in general, by (N23)2 and 10(N23), respec-
tively, with N the dynamically active degrees of freedom o
molecule. The coefficients appearing in Eq.~31! correspond
to N56 for a rigid biaxial molecule. It can be seen from Eq
~22! and ~29!–~31! that in the HS limituh55p/16 anduD
53p/8. Also, ul537p/16 if N56 and ul525p/32 if N
53.

IV. CONCLUDING REMARKS

The expressions forN11 in Eqs.~18! and~24! are the main
results of this work. We have used Eq.~18! in the preceding
section and here we present one more application of it.
reciprocal ofN11 of Eq. ~18! is the average timetcoll between
two consecutive inelastic collisions and is given by

tcoll5
2&p

nc̄^D&or
. ~35!

The first approximation of the relaxation time for the tran
tion of translational energy into rotational energy and v
versa is given by@1#

t5
N23

4nd
. ~36!

In our work N56 andd is given by@5#

d5
c̄

2&p
K 1

D
2

1

D3L
or

. ~37!

Hence

t* [
tcoll

t
5

4^D212D23&or

3^D&or
. ~38!
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The quantityt* , which vanishes in the hard-sphere limit, h
been fruitfully utilized in the past in the expansion@8,10# of
a low-density pure quantal fluid whose molecules poss
internal energy.
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In summary, we find that the present semiquantitat
analysis is interesting mainly as a supplement to our m
careful previous@5# analysis.
.
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